云程若提示您:看后求收藏(第129章 个性化推荐是天使还是恶魔,讼情,云程若,新笔趣阁),接着再看更方便。
请关闭浏览器的阅读/畅读/小说模式并且关闭广告屏蔽过滤功能,避免出现内容无法显示或者段落错乱。
随即打开淘宝,居然自动推荐的就是刚刚在微博上搜索到的物品,最开始李珊遇到的时候只是觉得可能是个巧合,但是次数多了,相信任谁也不能觉得这是巧合了,其实李珊那时候在想的是这种自动推荐有没有涉嫌侵犯消费者或用户的个人隐私,如果手机在任何App里搜索的信息都会上传到一个终端用于搜集用户偏好以进一步精准推荐达成成交率高的目的,那么是不是每个人在手机上进行的所有操作都会被背后一双看不见的眼睛注视着,那如何还有隐私可言啊?所以那个时候李珊根据这个大胆的设想,进行了一番研究。
所谓的个性化推荐的运行机制是:构建个性化推荐的基础是处理“人”与“信息”之间的关系,这里的信息指的是“物品信息”(在电商平台就是“商品信息”,在短视频平台就是”视频信息“),而人指的是”人“的兴趣点,个性化推荐系统往往会通过用户注册时填写的个人信息、用户的历史浏览信息等对其进行推断。通过对用户的年龄、爱好等信息进行收集,再用算法进行分析所收集的数据,用户的兴趣体系逐渐被建立并完善,形成互联网上常说的用户画像。例如用户如果常常浏览日漫、漫展等物品,个性化推荐系统便可能捕捉到这一信息,给该用户标记上二次元等用户标签。同时,系统对物品信息也会做进一步的数据挖掘工作,从而形成物品画像。在构建好用户画像和物品画像之后,个性化推荐系统会利用所有收集到的数据去联系“人”和”物品“。个性化推荐主要分成召回和排序两部分,召回的主要作用就是尽可能地找到用户可能感兴趣的物品,其中最经典的算法便是协同过滤算法。
协同过滤算法,顾名思义,协同过滤就是协同大家的反馈、评价和意见一起对海量的信息进行过滤,筛选出用户可能感兴趣的物品的过程。根据技术实现不同,协同过滤算法又可分为基于用户相似度的UsercF、基于物品相似度的ItemcF和基于隐向量表达的矩阵分解cF。
基于用户相似度的协同过滤UsercF的主要思想是兴趣相似的人喜欢相似的物品,简单来说,就是推荐给你和你浏览行为相似的用户所喜欢的物品。
基于物品相似度的协同过滤ItemcF则是从用户有过行为的物品下手,推荐给你与你喜欢的物品相似的物品。例如你今天看了一部《蜡笔小新》,那么就推荐给你算法认为的与《蜡笔小新》比较相似的《哆啦A梦》等动漫。
基于矩阵分解的协同过滤,矩阵分解cF的思想更为直接。它把用户与商品的交互行
本章未完,点击下一页继续阅读。